24 research outputs found

    The radiation budget in a regional climate model

    Get PDF
    The aim of this study is a better understanding of radiation processes in regional climate models (RCMs) in order to quantify their impact and to reduce possible errors. A first important task in finding an answer to this question was to examine the accuracy of the components of the radiation budget in regional climate simulations. To this end, the simulated radiation budgets of two regional climate simulations for Europe were compared with a satellite-based reference. In the simulations with the RCM COSMO-CLM there were some serious under- and overestimations of short- and long-wave net radiation in Europe. However, taking into account the differences in the reference datasets, the results of the COSMO-CLM were quite satisfactory. Using statistical methods, the influence of potential sources of uncertainties was estimated. Uncertainties in the cloud cover and surface albedo had a significant impact on uncertainties in short-wave net radiation, the explained variance of uncertainties in cloud cover was two to three times higher than that of uncertainties in surface albedo. Uncertainties in the cloud cover resulted in significant errors in the net long-wave radiation. However, the influence of uncertainties in soil temperature on errors in the long-wave radiation budget was low or even negligible. These results were confirmed in a comparison with simulations of the REMO and ALADIN regional climate models. It is reasonable to expect that a better parameterization of relatively simple parameters such as cloud cover and surface albedo is a means of significantly improving the simulation of radiation budget components in the COSMO-CLM. An important question for the application of RCMs is to examine whether the results of radiation uncertainties and their impact factors are comparable if the model is applied in a region that is not the one for which it was originally created. Comparisons of the simulated radiation budgets of different RCMs for West Africa showed that problems in the simulation of short- and long-wave radiation fluxes were a widespread problem. Most of the tested models showed some considerable under- or overestimation of the short- and long-wave radiation fluxes. Similar to Europe uncertainties in cloud cover were also in the simulations for Africa a significant factor affecting uncertainties in the simulated radiation fluxes. However, for the African simulations uncertainties in the parameterization of surface albedo were much more important than in Europe. On average, overland uncertainties in the cloud cover and surface albedo were of similar importance. Uncertainties in soil temperature simulations were of higher importance in Africa, and reached overland similar values of the mean explained variance (R2 ≈ 0.2) such as uncertainties in the cloud cover. This indicates a geographical dependence of the model error. This study confirmed the assumption that an improved parameterization of relatively simple parameters such as the surface albedo in RCMs leads to a significant improvement in the modeled radiation budget, particularly in Africa. The influence of errors in the simulated radiation budget components on the simulation of climate processes, such as the West-African monsoon (WAM), was investigated in a next step. The evaluation of ERA-Interim and ECHAM5 driven COSMO-CLM simulations for Africa showed that the main features of the WAM were well reproduced by the model, but there were only slight improvements compared to the driving data. The index of convective activity in the model simulations was much too high and precipitation was underestimated in large parts of tropical Africa. The partly considerable differences between the ERA-Interim and ECHAM5 driven simulations demonstrated the sensitivity of the RCM to the boundary conditions and in particular to the sea surface temperature. An excessive northwards shift of the monsoon in the model was influenced by the land-sea temperature gradient and the strength of the Saharan heat low. Consequently, a part of the error was due to the driving data and the model itself produced another part. By modifying the parameterization of the bare soil albedo the errors in the radiation budget and 2 m temperature in the Sahara region were significantly reduced. Similarly, the overesti-mation of precipitation and convection has been reduced in the Sahel. The effect of this modifi-cation on the examined WAM area was low. This confirmed that especially in desert regions, errors in the surface albedo were a driving factor for errors in the radiation budget. However, there are other important factors not yet sufficiently understood that have a strong influence on the quality of the simulation of the WAM. The analysis of the actual state, the quantification of error sources and the highlighting of connections made it possible to find means to reduce uncertainties in the simulated radiation in RCMs and to have a better understanding of radiation processes. However, the magnitude of the errors found, the number of possible influencing factors, and the complexity of interactions, indicate that there is still a need for further research in this area

    Satellite-based sunshine duration for Europe

    Get PDF
    In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG) SEVIRI (Spinning Enhanced Visible and Infrared Imager). The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP) station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed

    A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales

    Full text link
    The Caryophyllales constitute a major lineage of flowering plants with approximately 12500 species in 39 families. A taxonomic backbone at the genus level is provided that reflects the current state of knowledge and accepts 749 genera for the order. A detailed review of the literature of the past two decades shows that enormous progress has been made in understanding overall phylogenetic relationships in Caryophyllales. The process of re-circumscribing families in order to be monophyletic appears to be largely complete and has led to the recognition of eight new families (Anacampserotaceae, Kewaceae, Limeaceae, Lophiocarpaceae, Macarthuriaceae, Microteaceae, Montiaceae and Talinaceae), while the phylogenetic evaluation of generic concepts is still well underway. As a result of this, the number of genera has increased by more than ten percent in comparison to the last complete treatments in the Families and genera of vascular plants” series. A checklist with all currently accepted genus names in Caryophyllales, as well as nomenclatural references, type names and synonymy is presented. Notes indicate how extensively the respective genera have been studied in a phylogenetic context. The most diverse families at the generic level are Cactaceae and Aizoaceae, but 28 families comprise only one to six genera. This synopsis represents a first step towards the aim of creating a global synthesis of the species diversity in the angiosperm order Caryophyllales integrating the work of numerous specialists around the world

    Strategies for soil initialization of regional decadal climate predictions

    No full text
    The deep soil shows a long-term climate memory. Thus, the initialization method of the soil state in climate simulations potentially has an impact on climate predictions. This study focuses on regional decadal climate predictions with the model COSMO-CLM for Africa and Europe, driven by the global climate model MPI-ESM. The impacts of five soil initialization methods of different complexity are compared and assessed against 2 m-temperature and precipitation observations. Even though the results are heterogeneous in space and time with high uncertainties, some basic conclusions can be drawn. The simplest approach, i.e. interpolating the soil initial fields of the driving global climate model, is worst. The interpolation of soil data from a re-analysis product (here ERA-Interim) or extracting the initial state from a long-term spin-up simulation with COSMO-CLM driven by ERA-Interim give better results. Another approach extracts the initial state from a long-term spin-up simulation with COSMO-CLM's offline soil model TERRA-ML driven by gridded and improved observational data (here the WATCH data). The additional assimilation of satellite-based surface soil moisture data into this TERRA-ML simulation further improves the climate prediction in some regions. In conclusion, decadal climate prediction systems with sophisticated soil initialization schemes have the potential to make use of the soil's long-term memory. Most promising, but also most costly, is deep soil initialization by means of data assimilation. Remaining challenges are the persisting inconsistencies between driving data, assimilated observations, and soil model

    Analysis of the radiation budget in regional climate simulations with COSMO-CLM for Africa

    No full text
    This study analysed two regional climate simulations for Africa regarding the radiation budgets with particular focus on the contribution of potentially influential parameters on uncertainties in the radiation components. The ERA-Interim driven simulations have been performed with the COSMO-CLM (grid-spacings of 0.44 ° or 0.22 °). The simulated budgets were compared to the satellite-based Global Energy and Water Cycle Experiment Surface Radiation Budget and ERA-Interim data sets. The COSMO-CLM tended to underestimate the net solar radiation and the outgoing long-wave radiation, and showed a regionally varying over- or underestimation in all budget components. An increase in horizontal resolution from 0.44 ° to 0.22 ° slightly reduced the mean errors by up to 5 %. Especially over sea regions, uncertainties in cloud fraction were the main influencing parameter on errors in the simulated radiation fluxes. Compared to former simulations the introduction of a new bare soil albedo treatment reduced the influence of uncertainties in surface albedo significantly. Over the African continent errors in aerosol optical depth and skin temperature were regionally important sources for the discrepancies within the simulated radiation. In a sensitivity test it was shown that the use of aerosol optical depth values from the MACC reanalysis product improved the simulated surface radiation substantially

    Evaluation of daily maximum and minimum 2-m temperatures as simulated with the Regional Climate Model COSMO-CLM over Africa

    No full text
    The representation of the diurnal 2-m temperature cycle is challenging because of the many processes involved, particularly land-atmosphere interactions. This study examines the ability of the regional climate model COSMO-CLM (version 4.8) to capture the statistics of daily maximum and minimum 2-m temperatures (Tmin/Tmax) over Africa. The simulations are carried out at two different horizontal grid-spacings (0.22° and 0.44°), and are driven by ECMWF ERA-Interim reanalyses as near-perfect lateral boundary conditions. As evaluation reference, a high-resolution gridded dataset of daily maximum and minimum temperatures (Tmin/Tmax) for Africa (covering the period 2008–2010) is created using the regression-kriging-regression-kriging (RKRK) algorithm. RKRK applies, among other predictors, the remotely sensed predictors land surface temperature and cloud cover to compensate for the missing information about the temperature pattern due to the low station density over Africa. This dataset allows the evaluation of temperature characteristics like the frequencies of Tmin/Tmax, the diurnal temperature range, and the 90th percentile of Tmax. Although the large-scale patterns of temperature are reproduced well, COSMO-CLM shows significant under- and overestimation of temperature at regional scales. The hemispheric summers are generally too warm and the day-to-day temperature variability is overestimated over northern and southern extra-tropical Africa. The average diurnal temperature range is underestimated by about 2°C across arid areas, yet overestimated by around 2°C over the African tropics. An evaluation based on frequency distributions shows good model performance for simulated Tmin (the simulated frequency distributions capture more than 80% of the observed ones), but less well performance for Tmax (capture below 70%). Further, over wide parts of Africa a too large fraction of daily Tmax values exceeds the observed 90th percentile of Tmax, particularly across the African tropics. Thus, the representation of processes controlling Tmax including cloud-solar interaction, radiation processes, and ground heat fluxes should be improved by further model developments. The higher-resolution simulation (0.22°) is on average about 0.5°C warmer with a more pronounced overestimation of the higher percentiles of Tmax, and yields no clear benefit over the lower-resolution simulation

    Crossing Boundaries: Autoethnography of Subjective Experiences During Meditation

    No full text
    In this autoethnographic quadrologue, the authors aim to show how meditation experiences defy verbalization in a qualitative research setting. This leads to the insight that an autoethnographic approach may be a much better fit for such an experience, where complex and inexpressible things can be found. This is especially the case since autoethnographic texts include and immerse the reader in the experience. Even though in the case of meditation this can hardly be achieved, this quadrologue aims at conveying some of the struggles and peculiarities of meditation practice. It focuses on the research process leading to the decision to employ an autoethnography paradigm. Thus, the focus of this article is the differentiation of autoethnography from other methodological approaches and the conscious decision in favour of this method, which is rather unusual in German-speaking countries. The authors develop the thesis that both the meditation experience and the decision to employ an autoethnographic paradigm led to the experience of “wandering off the beaten track” and crossing the boundaries of what is usually done in society and social science respectively
    corecore